
UCRL-AR-133361

Appendix G

Probabilistic Plume Modeling



UCRL-AR-133361 Historical Case Analysis of CVOC Plumes March 1999

3-99/ CVOC:rtd G-1

Appendix G

 Probabilistic Plume Modeling

G-1.  Overview

The trends observed in the statistical evaluations of the field data, while intuitive, are empirical
owing to the nature of the analyses.  Reconciliation of these empirical findings with conceptual
mathematical models of plume behavior can provide a theoretical basis for interpreting the
observations.  Given the emphasis of the present study on identifying and quantifying relationships
between averaged site hydrogeologic variables and plume variables defined in a broad context,
analytical solutions are highly suitable models for a probabilistic approach.  They also produce
simplified representations of plume behavior that are readily amenable to statistical analyses.  In
this context, the heterogeneity in the groundwater flow field, which often severely limits the
application of analytical solutions, may be addressed through the macrodispersion coefficients.

Domenico (1987) presented a solution for concentration, C, as a function of x, y, and t, which
also accounts for the effects of dispersion in the vertical direction:
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 (Eq. G-1)

Here, C0 refers to a vertical rectangular-source (dimension Y  x Z), of solute concentration
along the upstream boundary, v the uniform groundwater velocity in the x-direction, αx, αy, and αz

the respective longitudinal, transverse, and vertical transverse dispersivities, R the retardation
coefficient, and λ the first-order transformation rate.  This solution is only valid for a semi-infinite
homogeneous aquifer.  From. Eq. G-1, the plume's length along the x-axis may be estimated by
setting y = 0 and C equal to some specific contour interval (i.e., C = 10 ppb), and solving for
x using a suitable numerical approach (in this case a bisection search algorithm).

Application of Monte Carlo simulation techniques to analytical solute transport models can
provide valuable insights into factors affecting plume behavior when combined with population
studies of existing groundwater plumes.  Monte Carlo analyses are routinely used in engineering
probability forecasting applications (e.g., Ang and Tang, 1984).  Woodbury et al. (1995)
discussed the use of Monte Carlo analyses in practical ground water engineering applications.  The
main reason for resorting to a probabilistic analysis of phenomena of transport making use of a
mathematical model stems from the lack of sufficient field data on site-specific features of plume



UCRL-AR-133361 Historical Case Analysis of CVOC Plumes March 1999

3-99/ CVOC:rtd G-2

behavior.  Probabilistic modeling of contaminant transport involves utilizing user-specified
probability distributions of physical and chemical model variables, based on available data, to
produce forecasts through multiple Monte Carlo realizations.  The Monte Carlo approach allows
uncertainties in hydrogeological data (e.g., hydraulic conductivity, hydraulic gradient (magnitude
and direction), nature of the source, and chemical data (e.g., degradation rates) to be translated into
uncertainties regarding plume extents and rates of growth.  Sensitivity analyses based on
comparing uncertainties in input variables to the variance in corresponding forecast results may
provide insight into the critical data for quantifying the behavior of plumes.

G-2.  Parameter Distributions

For the modeling analysis, synthetic plumes were generated using random combinations of the
variables in Eq. G-1.  The values of these variables were constrained by probability distributions
developed from field data (Table G-1).  Probability distributions of groundwater velocity were
obtained by Darcy’s law for ranges of K  and ∇h values noted at sites included in the study.
Similarly, a probability distribution for C0 could be estimated from the ranges of maximum
historical concentrations.  In this case, values of Cmax, representing maximum measured
concentrations, were chosen from the overall Cmax probability distribution observed in the field data
set.  For each synthetic plume realization, this value was assumed to represent 10% of the actual
boundary concentration, C0, based on the 10% saturation rule-of-thumb for inferring the presence
of DNAPL (Feenstra and Cherry, 1988).  Thus the geometric mean value of the C0 probability
distribution is a factor of ten higher than the Cmax distribution, although the standard deviation is
identical.

Ranges of other variables (e.g., R, αx, αy, t), while not well-constrained by the database, can
be assumed within reason using best professional judgment.  The retardation coefficient, R, for
example, may be calculated from the relationship,

φ
ρbococ fK

R +=1 (Eq. G-2)

where Koc is the organic carbon partitioning coefficient, foc is the fractional organic carbon
content, ρb the bulk density, and φ  the porosity.  The probability distribution of foc could not be
determined from the site database because of a paucity of data.  Instead, a probability distribution
was postulated (Fig. G-1) from a published distribution of foc values observed at a number of field
sites (Wiedemeier et al.,  1997).  First-order degradation rates ranging from
λ = 0.7 to λ = 0.07 year-1, corresponding to half-lives from 1 year to 10 years, were chosen
from an informal survey of reported values in the literature (the survey of reductive dehalogenation
rates of TCE by Aronson and Howard (1997) recommends half-lives of 1.2 years to 13.2 years as
conservative estimates).  Half of the synthetic plumes were assigned degradation rates within this
range, while the remainder of the plumes were assigned a degradation rate of λ = 0 as a control set
representing stable CVOCs.
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G-3.  Model Results

The output of the Monte Carlo simulations consisted of a distribution of plume lengths, each
corresponding to a unique set of random input variables chosen from the defined probability
distributions.  A total of 2000 realizations were developed.  To mimic the results of the field data
analyses as much as possible, only simulated plumes with lengths falling within the range of
observed plume lengths (approximately 100 feet to 10,000 feet) were included in the analysis.  To
simulate the size of the field data set, 100 plumes were drawn at random from the transforming
population and the stable population each.  Relationships between plume length and Cmax (assumed
equal to 1/10 the C0 value for each realization) as well as plume length and specified site
groundwater velocity, v, are shown for all synthetic plumes on Figures G-2 and G-3, respectively.
The scatter evident in both relationships illustrates the effect of multiple variables on plume length,
even under ideal conditions (uniform groundwater velocity field, Fickian-type dispersion, uniform
transformation rate, isotropic two-dimensional aquifer, and constant boundary conditions).  The
relationship between plume length and Cmax reproduces the scatter observed in the field data fairly
well (Appendix A, Fig. A-1).  In contrast, much more scatter is evident in the field data with
respect to the plume-length-versus-velocity relationship (Appendix A, Fig. A-3) than in the
simulated plume set.  The explanation for this difference is likely to stem from the difficulty in
defining a mean site groundwater velocity for a real field site, in contrast to the specified (known)
uniform velocities characterizing the synthetic plumes.

Synthetic plume length distributions for transforming and stable CVOC plumes are shown on
Fig. G-4 (top).  These results are very similar to analysis of the field data; transformations appear
to exert little influence on raw plume lengths above the noise in the data caused by other factors.
However, the definition of a plume length index for the synthetic plumes in a manner analogous to
the measured plume lengths (Appendix A, Eq. A-1) produces a significant separation of the two
probability distributions (Fig. G-4, bottom).  This analysis procedure and the results are consistent
with those associated with the field data.  The findings thus support the conclusion that source
strength and groundwater velocity exert a strong enough influence on plume length to be directly
discernible.  In contrast, transformation rates are slow enough so that plume length effects cannot
be easily identified above the noise associated with plume data without normalization procedures.

Rank-based correlation coefficients quantifying the relationships between plume length, the
plume length index as defined in Appendix A, and the various model variables are shown in
Table G-2.  The correlation coefficients indicate the importance of groundwater velocity variability
and variability in the boundary concentration in influencing plume length relative to other variables.
Dividing plume length by v and Cmax reduces the effects of these two variables, so that the
correlations between other variables such as λ and the plume length index improve.  This may
explain why the plume length index concept is successful at identifying differences between the
plumes from the No RD and Strong RD groups; the indexing procedure improves the correlation of
plume extent with the rate of transformation.

Best-fit lognormal frequency distributions of input parameters (maximum concentration and
groundwater velocity) and output metrics (plume length and plume length indices) are shown on
Figure G-5 for the synthetic plume population, with the same distributions gleaned from the field
data shown as a summary comparison.  The capacity of the model to capture the average behavior
of plumes in the data set is encouraging, providing support to the notion that site-specific effects
tend to average out over a large number of sites, so that general trends do become apparent.
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Ultimately, the modeling results, the field data, and the general linear model development
(Appendix C) all convey the possibility of examining plume populations as multivariate systems
(Figs. G-6 and G-7).  Models of such systems would link measurable aspects of plume behavior,
such as length, to linear combinations of variables (or log variables) in a statistical sense.
Powerful new insights could be gleaned into plume behavior, provided that a large enough data set
could be assembled to allow analyses of distinct regions of variable space.  In the examples given
in Figs. G-6 and G-7, the multivariate relationship between plume length, groundwater velocity,
and maximum concentration suggests a much stronger role for velocity in influencing plume length
in the synthetic plume population than in the field data.  This may stem from a deficiency in our
capacity to accurately quantify a true mean groundwater velocity for field sites, as the modeled
plumes are all based on an assumption of a uniform flow field which is known precisely.  As such,
this may suggest the need to use geostatistical approaches in future analyses which quantify the
uncertainties associated with groundwater velocity at field sites in the data set.
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Table G-1.  Transport model parameter probability distributions.

Parameter Distribution Basis

Maximum concentration
(ppb), C0

Lognormal.

10th-percentile: 29

90th-percentile: 23,750

Lognormal distribution fit to
observations, uniformly multiplied
by 10.

Source area width (ft), Y Uniform.

5-60

Postulated.

Source area depth (ft), Z Uniform.

5-60

Postulated.

Hydraulic conductivity
(ft/day), K

Lognormal.

10th-percentile: 0.19

90th-percentile: 246

Lognormal observations fit to
geometric mean values from each
site1.

Hydraulic gradient, ∇h Lognormal.

10th-percentile: 0.0011

90th-percentile: 0.0614

Lognormal observations fit to
reported values from each site

Porosity, φ Normal.

0.25 ± 0.03

Postulated.

Fractional soil organic
carbon, foc

Lognormal.

10th-percentile: 0.01%

90th-percentile: 1%

Postulated.

Transformation half-life (yrs),
t1/2

Uniform.

1-10

Postulated; based on an informal
review of literature values.

Ratio of longitudinal
dispersivity, αx, to plume
length

Lognormal.

10th-percentile: 0.033

90th-percentile: 0.33

Postulated; based on the common
assumption of the ratio of αx to
plume length ~ 10%.

Ratio of longitudinal
dispersivity, αy, to plume
length

Lognormal.

10th-percentile: 0.0033

90th-percentile: 0.033

Postulated; based on the common
assumption of the ratio of αy to αx ~
10%.

Ratio of longitudinal
dispersivity, αz, to plume
length

Lognormal.

10th-percentile: 1.67 x 10-3

90th-percentile: 1.67 x 10-2

Postulated.

Elapsed time since release
(yrs), t

Uniform.

10-50

Postulated; informally based on
typical reported site use histories.

                                                
1Based on reported pumping test or slug test results.
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Table G-2.  Rank correlation coefficients (Spearman’s r) between simulated plume length
and plume length indices and model variables.

Variable
Rank correlation coefficent

with respect to L
Rank correlation coefficent with

respect to PLI

Groundwater velocity, v 0.73 –

Maximum concentration, Cmax 0.32 –

Retardation coefficient, R -0.20 -0.32

Ratio of vertical dispersivity to
plume length, αz:L

-0.20 0.06

First-order degradation
coefficient, λ

-0.12 -0.21

Ratio of longitudinal dispersivity
to plume length, αx:L

0.06 0.15

Transverse extent of source area, Y -0.04 0.25

Vertical extent of source area, Z -0.04 0.18

Ratio of transverse dispersivity to
plume length, αy:L

-0.01 -0.16

Elapsed time since source term
initiation, t

0.00 -0.01
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Figure G-6.  Multivariate relationship between log hydraulic conductivity, log maximum historical
concentration, and log plume length for measured data (viewed from multiple angles).
Biotransformation was eliminated as a varible min this scatter plot by plotting only plumes from the
No-RD group.  Multivariate correlation coefficient: r= 0.48 (corresponding best-fit planar surface
shown in right column).
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Figure G-7.  Multivariate relationship between log hydraulic conductivity, log maximum historical
concentration, and log plume length for synthetic plume population (viewed from multiple angles).
Degradation was eliminated as a variable in this scatter plot by plotting only those plumes that
were assigned a value of l=0.  Multivariate correlation coefficient: r= 0.83 (corresponding best-fit
planar surface shown in right column).
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